SNi, SET, and Neighbouring Group Participation Mechanisms

1. SNi Mechanism (Substitution Nucleophilic Internal)

Definition: Nucleophilic substitution where both the leaving group and nucleophile are part of the same molecule, leading to retention of configuration.

Key Features:

- Unimolecular process (rate ∝ [substrate])
- Occurs with retention of configuration
- Internal nucleophile formed during reaction
- Example: Alcohol → Alkyl chloride using SOCl₂

Mechanism Example:

 $R-CH_2-OH \rightarrow R-CH_2-OSOCl \rightarrow R-CH_2-Cl$ (retention)

Summary: Retention via internal chloride reattack; unimolecular internal nucleophilic substitution.

2. SET Mechanism (Single Electron Transfer)

Definition: Involves transfer of one electron from donor to acceptor, forming radical intermediates. Common in photochemical and redox reactions.

Key Features:

- Radical mechanism
- Involves single-electron transfer and radical intermediates
- Occurs in photochemical or metal-free reactions

Example (SRN1 Mechanism):

 $Ar-X + e^- \rightarrow Ar \bullet + X^-$

 $Ar \bullet + Nu^- \rightarrow Ar - Nu + e^-$

Applications: SRN1, Sandmeyer, and metal-free borylation reactions.

3. Neighbouring Group Participation (NGP)

Definition: When a nearby atom or group with a lone pair or π -bond participates in the reaction mechanism by forming a temporary bond or cyclic intermediate.

Key Features:

- Neighboring atom assists reaction via anchimeric assistance
- Forms cyclic (bridged) or resonance-stabilized intermediates
- Leads to rate enhancement and altered stereochemistry

Examples:

- (a) Participation by lone pair: β -halo ether \rightarrow cyclic oxonium ion intermediate
- (b) Participation by π -bond: Allylic or benzylic systems stabilize carbocation

Consequences:

- Rate acceleration
- Possible retention or inversion
- Formation of stable cyclic intermediates

Comparison Summary

 $SNi \rightarrow Internal substitution (Retention, Ion pair)$

SET → Radical mechanism (Single electron transfer)

 $NGP \rightarrow Intramolecular assistance (Anchimeric assistance)$

Classical and Non-Classical Carbocations, Phenonium Ion, and Reactivity

1. Classical Carbocations

Definition: A classical carbocation is a positively charged carbon species (C⁺) in which the positive charge is localized on a single carbon atom.

Structure:

- sp² hybridized carbon
- Trigonal planar geometry (~120°)
- Contains three σ -bonds and an empty p-orbital

Examples: tert-butyl cation (CH₃)₃C⁺, benzyl cation (C₆H₅CH₂⁺), allyl cation (CH₂=CH-CH₂⁺)

Stability order: 3° > 2° > 1° > CH₃+

Representation: Positive charge is localized on one carbon atom.

2. Non-Classical Carbocations

Definition: A non-classical carbocation is a delocalized carbocation in which the positive charge is shared over two or more carbon atoms by bridging of electrons or σ -bonds.

Structure:

- Involves 3-center-2-electron bonds
- Positive charge delocalized over multiple atoms
- More stable due to delocalization

Examples: Norbornyl cation $(C_7H_{13}^+)$, cyclopropylmethyl cation, phenonium ion.

Key Features:

- Stabilized by delocalization of charge
- More stable than classical cations
- Supported by NMR and X-ray crystallography evidence.

3. Phenonium Ion

Definition: The Phenonium ion is a non-classical benzylic carbocation where the phenyl ring participates in stabilizing the positive charge through formation of a bridged intermediate.

Formation: Occurs during reactions involving β -phenylalkyl halides or aryldiazonium ions: $Ph-CH-CH_2-X \rightarrow [Ph-CH-CH_2]^+ \rightarrow Phenonium ion.$

Structure:

- Three-membered bridged ring between ortho-carbon of phenyl ring and carbocation center.
- Positive charge delocalized between benzylic carbon and aromatic ring.

Significance:

- Explains retention or rearrangement in benzylic systems.
- Intermediate in solvolysis and substitution reactions.

4. Reactivity and Stability of Carbocations

A. Effect of Substrate Structure:

- 1. Alkyl substitution: +I effect and hyperconjugation stabilize carbocation \rightarrow 3° > 2° > 1°.
- 2. Resonance: Delocalization through π -system \rightarrow Allyl > Benzyl > Alkyl.
- 3. Hybridization: $sp < sp^2 < sp^3$ stability.
- 4. Ring strain relief: Formation of bridged cation increases stability.
- 5. Neighbouring group participation: Stabilizes carbocation via cyclic intermediate.
- B. Effect of Attacking Nucleophile:
- 1. Strong nucleophile (e.g., OH⁻, RO⁻): Favors SN2 mechanism.
- 2. Weak nucleophile (e.g., H₂O, ROH): Favors SN1 mechanism.
- 3. Bulky nucleophile: Slower attack due to steric hindrance.
- 4. Polar solvent: Stabilizes carbocation \rightarrow increases SN1 rate.
- 5. Aprotic solvent: Stabilizes anions \rightarrow increases SN2 rate.

Examples:

```
tert-Butyl bromide + H_2O → SN1 → tert-butyl alcohol
Ethyl bromide + OH^- → SN2 → ethanol
Benzyl bromide → SN1 (fast) → benzyl alcohol
Allyl bromide → SN1 (fast) → allyl alcohol
```

Summary Table

Classical Carbocation \rightarrow Planar, localized C⁺; stability by +I and hyperconjugation (e.g., tert-butyl).

Non-Classical Carbocation \rightarrow Bridged, delocalized; stability via σ or π delocalization (e.g., norbornyl).

Phenonium Ion \rightarrow Bridged benzylic; delocalized through aromatic ring (e.g., β -phenylethyl system).